Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37958782

RESUMEN

Topoisomerase I (TopoI) in Streptococcus pneumoniae, encoded by topA, is a suitable target for drug development. Seconeolitsine (SCN) is a new antibiotic that specifically blocks this enzyme. We obtained the topARA mutant, which encodes an enzyme less active than the wild type (topAWT) and more resistant to SCN inhibition. Likely due to the essentiality of TopoI, we were unable to replace the topAWT allele by the mutant topARA version. We compared the in vivo activity of TopoIRA and TopoIWT using regulated overexpression strains, whose genes were either under the control of a moderately (PZn) or a highly active promoter (PMal). Overproduction of TopoIRA impaired growth, increased SCN resistance and, in the presence of the gyrase inhibitor novobiocin (NOV), caused lower relaxation than TopoIWT. Differential transcriptomes were observed when the topAWT and topARA expression levels were increased about 5-fold. However, higher increases (10-15 times), produced a similar transcriptome, affecting about 52% of the genome, and correlating with a high DNA relaxation level with most responsive genes locating in topological domains. These results confirmed that TopoI is indeed the target of SCN in S. pneumoniae and show the important role of TopoI in global transcription, supporting its suitability as an antibiotic target.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Transcriptoma , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Streptococcus pneumoniae/genética , Girasa de ADN/genética , Girasa de ADN/metabolismo , Antibacterianos/farmacología
2.
Front Microbiol ; 13: 1094692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713152

RESUMEN

Two enzymes are responsible for maintaining supercoiling in the human pathogen Streptococcus pneumoniae, gyrase (GyrA2GyrB2) and topoisomerase I. To attain diverse levels of topoisomerase I (TopoI, encoded by topA), two isogenic strains derived from wild-type strain R6 were constructed: PZn topA, carrying an ectopic topA copy under the control of the ZnSO4-regulated PZn promoter and its derivative ΔtopAPZn topA, which carries a topA deletion at its native chromosomal location. We estimated the number of TopoI and GyrA molecules per cell by using Western-blot and CFUs counting, and correlated these values with supercoiling levels. Supercoiling was estimated in two ways. We used classical 2D-agarose gel electrophoresis of plasmid topoisomers to determine supercoiling density (σ) and we measured compaction of nucleoids using for the first time super-resolution confocal microscopy. Notably, we observed a good correlation between both supercoiling calculations. In R6, with σ = -0.057, the average number of GyrA molecules per cell (2,184) was higher than that of TopoI (1,432), being the GyrA:TopoI proportion of 1:0.65. In ΔtopAPZn topA, the number of TopoI molecules depended, as expected, on ZnSO4 concentration in the culture media, being the proportions of GyrA:TopoI molecules in 75, 150, and 300 µM ZnSO4 of 1:0.43, 1:0.47, and 1:0.63, respectively, which allowed normal supercoiling and growth. However, in the absence of ZnSO4, a higher GyrA:TopoI ratio (1:0.09) caused hyper-supercoiling (σ = -0.086) and lethality. Likewise, growth of ΔtopAPZn topA in the absence of ZnSO4 was restored when gyrase was inhibited with novobiocin, coincidentally with the resolution of hyper-supercoiling (σ change from -0.080 to -0.068). Given that TopoI is a monomer and two molecules of GyrA are present in the gyrase heterotetramer, the gyrase:TopoI enzymes proportion would be 1:1.30 (wild type R6) or of 1:1.26-0.86 (ΔtopAPZn topA under viable conditions). Higher proportions, such as 1:0.18 observed in ΔtopAPZn topA in the absence of ZnSO4 yielded to hyper-supercoiling and lethality. These results support a role of the equilibrium between gyrase and TopoI activities in supercoiling maintenance, nucleoid compaction, and viability. Our results shed new light on the mechanism of action of topoisomerase-targeting antibiotics, paving the way for the use of combination therapies.

3.
Sci Rep ; 7(1): 15183, 2017 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-29123323

RESUMEN

The aim of this study was to evaluate the elemental content and morphology of enamel subjected to demineralization cycles after bracket debonding, adhesive remnant removal, and application of a fluoride varnish. 125 bovine teeth were divided into five groups (n = 25): 1) Intact enamel; 2) Intact enamel + demineralization cycles (DC); 3) Enamel after adhesive removal; 4)Enamel after adhesive removal + DC; 5) Enamel after adhesive removal + Profluorid + DC. The weight percentages of calcium (Ca), phosphorous (P) and fluoride (F) were calculated using energy dispersive X-ray spectroscopy (EDX). Samples were observed under scanning electron microscopy (SEM). Data were analyzed using Kruskal-Wallis and Mann-Whitney test. The weight percentages of Ca and P in Group 1 were significantly higher than Groups 2, 4, and 5. The weight percentages of Ca and P in Group 2 were significantly higher than Groups 4 and 5. Group 3 presented significantly higher percentages of Ca and P than Group 4. Group 5 showed a significantly higher percentage of Ca than Group 4. The presence of F was detected in Group 5. SEM images showed more signs of demineralization in Group 4 than Group 5. Fluoride varnish application may protect enamel from demineralization after bracket debonding.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...